

Improvement of GE Power's Chilled Ammonia Process using Membrane Technology

Large Pilot Scale Post Combustion CO₂ Capture No. FE0026589 National Energy Technology Laboratory \ Department of Energy August 9, 2016

Acknowledgement

This material is based upon work supported by the Department of Energy under Award Number **DE-FE0026589**.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

- ElectroSep, Dr. Paul Parisi, Todd Larson
- General Electric Power & Water, Alexander Gorman
- OSMO: Jurgen Muller
- Georgia Inst itute of Technology, Dr. Sankar Nair, Dr. Ryan Lively, Nikita Kevlich

Project Review Meeting Agenda

- Project Overview
 - Funding (DOE and Cost Share)
 - Overall Project Performance Dates
 - Project Participants
 - Overall Objectives
- Technology Background
- Technical Approach / Project Scope
- Progress and Current Status
 - Budget Period (length and cost)
 - Accomplishments
 - Performance levels achieved
- Future Testing / Development

Discussion Topics

Project Overview

Technology Background

Technical Approach / Project Scope

Progress / Current Status

Future Development / Testing

Project Background

- Utilize liquid-liquid membrane technology to improve General Electric's Chilled Ammonia Process (CAP) CO₂ capture technology
 - Elimination of CAP liquid ammonium sulfate effluent stream
 - Reduction of CAP energy demand
 - Initial laboratory testing of concepts performed in a development program outside the scope of this work

Project Overview

- Perform Technical Economic Analysis of concepts and compare with DOE Baseline
- Perform Gap Analysis to assess development needs
- Provide Final Report to summarize findings

Project Overview

• Original Project Funding (DOE and Cost Share)

Budget Period No.	Budget Period Start	Government Share \$/%	Recipient Share \$/%	Total Estimated Cost
1	10/01/2015	\$922,709 (74.1%)	\$322,933 (25.9%)	\$1,245,642
	Total Project	\$922,709 (74.1%)	\$322,933 (25.9%)	\$1,245,642

- Overall Project Performance Dates
 - Technical Economic Analysis
 - GAP Analysis
 - Final Report

6/30/2016 9/1/2016 9/30/2016

Project Overview

- Phase I Overall Objectives (original)
 - Complete a preliminary techno-economic analysis (TEA) and technology gap analysis of membrane concepts for the Chilled Ammonia Process at a full scale 550 MW power generation facility to show the concepts have the potential to meet DOE's desired cost and performance goals.
 - Complete a firm estimate of the costs and schedule needed to modify the existing large pilot facility at the host site.
 - Develop key project success criteria values and risks.
- Modification of membrane development program due to laboratory test results
 - Decision not to proceed with the Large Pilot Modifications and application for Phase II funding
- Phase I Overall Objectives (revised)
 - Complete a final Techno-Economic Analysis (TEA) and Technology Gap Analysis (TGA) of membrane concepts for the Chilled Ammonia Process at a full scale 550 MW power generation facility to show the concepts have the potential to meet DOE's desired cost and performance goals.
 - Develop key project risks.

Discussion Topics

Project Overview

Technology Background

Technical Approach / Project Scope

Progress / Current Status

Future Development / Testing

CAP Technology Background

© 2016, General Electric Company

Technology Background

- Membrane Concepts for Development in the Chilled Ammonia Process
 - Concept 1: Elimination of CAP Ammonium Sulfate Byproduct and Reduction of Reagent Consumption
 - Concept 2: Reduction of CAP Ammonia Stripper Energy Using Membrane Technology
 - Utilize commercially available membrane systems

Technology Background Concept Advantages

Membrane technology improvements include:

- Concept 1 Bipolar membrane electrodialysis
 - Elimination of CAP ammonium sulfate byproduct stream, costs for disposal or crystallization, concentration
- Concept 2 Membrane technology to reduce stripper energy using reverse osmosis
 - Reduction in CAP energy demand
 - Stripper duty can be reduced significantly.
 - Stripper and associated heat exchanger sizes can be reduced
- Overall reduction in cost of electricity as compared to DOE Baseline

Technology Background Membrane Improvement Concept 1

Electrodialysis for Ammonium Sulfate Dissociation

- Benefits
 - Use of electrodialysis bipolar membrane to convert ammonium sulfate byproduct to process reagents
 - Reduction in sulfuric acid and ammonia reagent consumption
 - Elimination of ammonium sulfate byproduct stream (beneficial for locations where off-taker is not available).
 - Reduction in operating costs
 - Reduction in reagent (typical: anhydrous ammonia) storage on site

Technology Background Membrane Improvement Concept 2

Benefits

- Stripper feed ammonia levels are concentrated with reverse osmosis membrane separator resulting in reduced feed flow rate
- Higher ammonia slip from the absorber is allowable.
- Absorber chiller duty can be minimized significantly.
- Stripper duty can be minimized significantly or eliminated resulting in specific steam energy Stripper and associated heat exchanger sizes can be reduced by ~50%

Technology Background Membrane Improvement Concept 2

• Benefits:

- Utilize reverse osmosis membrane technology to concentrate CO2 wash bottoms stream
- Allows operation of the regenerator at lower pressure and higher ammonia emissions
- Allows lower pressure steam to regenerator

Technology Background

Research Leading to Award

Chilled Ammonia Process Update on GE Power roadmap

Roadmap to commercialization, 90% CO₂ capture demonstrated

Technology Background Bench Scale Electrodialysis Testing

- Bench-scale Testing
 - Bipolar membrane electrodialysis by ElectroSep
 - Membrane systems
 - Anode exchange membrane
 - Cathode exchange membrane
 - Bipolar membrane
 - Test program completed
 - Parametric test program using synthetic solutions
 - Results indicate initial
 membrane selection is feasible
 - Additional experience provided by GE Power & Water

Electrodialysis Test Unit ElectroSep Test Facilities Saint Lambert, Quebec

Technology Background Preliminary Results Reverse Osmosis Testing

- Bench-scale testing at Georgia Institute
 of Technology
- High rejection, seawater membrane samples tested from multiple suppliers
- Cellulose acetate, polyamide membranes
- Synthetic feed solution (stripper feed)
 - Ammonia-CO₂ solution: 1.5 M NH₃ using ammonium bicarbonate.
- Higher osmotic pressure needed to achieve desired ammonia rejection performance, flux
- Further testing with high pressure membranes is required

Reverse Osmosis Membrane Test Unit Georgia Institute of Technology Membrane Test Facilities Alanta, Ga.

Technology Background Membrane Development Challenges

Concept 2

- Higher pressure Reverse Osmosis membranes required
 - Increase in power consumption, operating costs
 - Increased capital cost
 - Increased membrane replacement costs
 - Decreased economic attractiveness
- New Reverse Osmosis concept considered to utilize lower pressure membranes
 - Laboratory testing of concept is needed
 - Economic assessment of concept needed
 - Development program to be revised

Discussion Topics

Project Overview

Technology Background

Technical Approach / Project Scope

Progress / Current Status

Future Development / Testing

Technical Approach / Scope Project Deliverables

	Date	Status
Phase 1 550 MW Technology Engineering Design and Economic Analysis	June 30, 2016	Submitted June 30, 2016
Phase 1 Technology Gap Analysis	September 1, 2016	September 1, 2016
Phase 1 Final Report	September 30, 2016	September 30, 2016

Discussion Topics

Project Overview

Technology Background

Technical Approach / Project Scope

Progress / Current Status

Future Development / Testing

Progress of Project Project Schedule & Key Milestones

Table 1 Milestone Log for Q3	ENDING	6/31/2015		
	Planned	Actual		Comments (progress toward achieving
	Completion	Completion	Verification	milestone, explanation for deviation
Milestone Description	date	Date	Method	from plan, etc.)
Kick-Off Meeting	10/28/2015	10/28/2015	Meeting	Done
Updated Project Schedule	10/28/2015	10/28/2015	Presentation	Done
				Effort discontinued. No phase 2
Updated Project Management Plan	11/15/2015	NA	Report File	application will be submitted
Mass Balance 550 MW (C. S. and Water)				
for TEA	11/15/2015	11/6/2016	Report File	Done
Mass Balance 15 MW (C. S. and Water) for				
Pilot plant	11/30/2015	12/3/2015	Report File	Done
Steam Cycle Simulations for TEA	11/30/2016	12/15/2015	Report File	Done
	11/00/2010	12/10/2010	report no	
PFD & Block Flow diagram 550 MW TEA	11/30/2015	11/20/2015	Report File	Done
PFD & Block Flow diagram 15 MW Pilot	12/15/2015	12/7/2015	Report File	Done
Data Sheet for 15 Mw skids (1 each				Effort discontinued. No phase 2
concept)	12/30/2015	12/17/2015	Report File	application will be submitted
Equipment Summary Sheet 550 MW	1/15/2016	6/30/2016	Report File	Done
	1/10/2010	0/00/2010		Effort discontinued No phase 2
RFQ Skids 15 MW	1/4/2016	NA	Report File	application will be submitted
Vendor Engineering Skids complete 15				
MW	2/28/2016	NA	Report File	Done
Capital Cost Estimate for TEA-550 MW	2/15/2016	6/30/2016	Report File	Done
Operating Cost Estimates for TEA-550 MW	2/15/2016	6/30/2016	Report File	Done
Cost of Electricity for TEA-550 MW	3/1/2016	6/30/2016	Report File	Done
Itemizerized Cost Summary-550 MW	3/15/2016	6/30/2016	Report File	Done
				Effort discontinued. No phase 2
Phase 2 Schedule	2/29/2016	NA	Report File	application will be submitted
				Effort discontinued. No phase 2
Phase 1 EHS preliminary assessment	2/29/2016	NA	Report File	application will be submitted
Topical Report with Itemized Cost				Effort discontinued. No phase 2
Summary for Phase 2	3/31/2016	NA	Presentation	application will be submitted
				Effort discontinued. No phase 2
Updated PMP for Phase 2	3/31/2016	NA	Report File	application will be submitted
TEA Report 550 MW	3/31/2016	6/30/2016	Presentation	Done
GAP Analysis	3/31/2016	8/30/2016	Presentation	Will be released with final report Aug 30, 2016
				Effort discontinued. No phase 2
Application for Renewal (write-up)-Phase 2	3/31/2016	NA	Presentation	application will be submitted
				Effort discontinued. No phase 2
Executed Financial Arrangments	6/30/2015	NA	Report File	application will be submitted
Encoded Otto March American				Effort discontinued. No phase 2
Executed Site Host Agreements	6/30/2015	NA	Report File	application will be submitted
COMO CO for Phase 2	010010045		Notification	Effort discontinued. No phase 2
GO/NO GO for Phase 2	6/30/2015	NA	Notification	Effort discontinued. No phase 2
Notification of Phase 2 Award	9/21/2010	NIA	Notification	application will be submitted
Houndaroll OF Flidse 2 Awaru	0/31/2016	NA	Houncauon	application will be submitted

- Large Pilot Accomplishments
 - Heat and Material Balances
 - Membrane estimates
 - Initial plant layout developed
 - Project discontinued
- Technical economic analysis
 - Submitted for review
 - Cost of electricity improvement from Baseline
 - Improvement not sufficient to proceed with existing design at large pilot

Progress of Project Techno-Economic Analysis

- Plant layout
- Capital cost estimate
- Construction costs
- Power generation facility costs
- Steam cycle and steam / water integration
- TEA submitted for review

Techno-Economic Analysis Results

- Comparison to DOE Baseline (Case 12)
 - Improvement in power plant steam cycle efficiency
 - Decrease in total overnight costs
 - Reduction in cost of electricity (CoE) from the DOE baseline
 - Performance: degree of CoE improvement not sufficient to justify further development of the original Concept 2 Reverse Osmosis
 - New Reverse Osmosis membrane concept developed using low pressure membranes: expected to improve capital and operating costs, CoE

Technology Gap Analysis

Technology areas considered in this project and the respective gaps are listed below

Technology area	Current R&D status	Technology Gap and R&D plan
Chilled Ammonia Process without membranes	Tested at different pilot scales and ready for large scale testing	 Ammonium sulphate removal where no market takers Stripper energy consumption optimization NH₃ volatility reduction in absorber
Electro-dialysis unit	Tested at pilot scale in batch mode and ready for large pilot scale testing	 Potential for impurity interferences: test using power plant solutions Scale-up to full scale sizes
Reverse osmosis membrane separation	Tested at bench scale and ready for pilot scale testing	 Low pressure membranes can only be used with modified process flow scheme New process flow scheme with low pressure membranes has to be validated at bench and pilot scale High pressure membranes are not cost effective and are currently with low lifetime

- Technology Gap Analysis Report is due September 1st, 2016
- Initial Gap Analysis draft completed: internal review

Belews Creek | 10 November 2015

Progress Summary

- Techno-Economic Analysis Submitted on June 30, 2016
- Gap Analysis to be submitted September 1, 2016
- Final Report (summary of TEA & Gap Analysis) to be submitted September 30, 2016

Discussion Topics

Project Overview

Technology Background

Technical Approach / Project Scope

Progress / Current Status

Future Development / Testing

Future Development & Testing

- New membrane improvement concept development
 - Lower pressure membrane design
 - Conduct laboratory testing at supplier facilities
 - Conduct laboratory testing at GE test facilities
 - Economic assessment to be performed to determine feasibility
 - Research and development budget to be determined in January, 2017

